深入理解Transformer,兼谈MHSA(多头自注意力)、LayerNorm、FFN、位置编码

news/2024/7/19 10:19:46 标签: transformer, 深度学习, 人工智能

Attention Is All You Need——集中一下注意力

  • Transformer其实不是完全的Self-Attention结构,还带有残差连接、LayerNorm、类似1维卷积的Position-wise Feed-Forward Networks(FFN)、MLP和Positional Encoding(位置编码)等
  • 本文涵盖Transformer所采用的MHSA(多头自注意力)、LayerNorm、FFN、位置编码
  • 对1维卷积的详解请参考深入理解TDNN(Time Delay Neural Network)——兼谈x-vector网络结构
  • 对Self-Attention的Q、K、V运算的详解请参考深入理解Self-attention(自注意力机制)

Transformer的训练和推理

  • 序列任务有三种:
    • 序列转录:输入序列长度为N,输出序列长度为M,例如机器翻译
    • 序列标注:输入序列长度为N,输出序列长度也为N,例如词性标注
    • 序列总结:输入序列长度为N,输出为分类结果,例如声纹识别
  • 前两个序列任务,常用Transformer进行统一建模,Transformer是一种Encoder-Decoder结构。在Transformer中:
  • 推理时
    • Encoder负责将输入 ( x 1 , x 2 , . . . , x n ) (x_1, x_2, ..., x_n) (x1,x2,...,xn),编码成隐藏单元(Hidden Unit) ( z 1 , z 2 , . . . , z n ) (z_1, z_2, ..., z_n) (z1,z2,...,zn),Decoder根据隐藏单元和过去时刻的输出 ( y 1 , y 2 , . . . , y t − 1 ) (y_{1}, y_{2}, ..., y_{t-1}) (y1,y2,...,yt1) y 0 y_{0} y0为起始符号"s"或者 y 0 = 0 y_{0}=0 y0=0(很少见),解码出当前时刻的输出 y t y_{t} yt,Decoder全部的输出表示为 ( y 1 , y 2 , . . . , y m ) (y_{1}, y_{2}, ..., y_{m}) (y1,y2,...,ym)
    • 由于当前时刻的输出只依赖输入和过去时刻的输出(不包含未来信息),因此这种输出的生成方式是自回归式的,也叫因果推断(Causal Inference)
  • 训练时
    • Encoder行为不变,Decoder根据隐藏单元和过去时刻的label ( y ^ 1 , y ^ 2 , . . . , y ^ t − 1 ) (\hat{y}_{1}, \hat{y}_{2}, ..., \hat{y}_{t-1}) (y^1,y^2,...,y^t1),解码出当前时刻的输出 y t y_{t} yt,由于需要对每个 y t y_{t} yt计算损失,而系统必须是因果的,因此每次解码时,需要Mask掉未来的信息,也就是全部置为 − ∞ -\infty (从而Softmax运算后接近0),当label为“s I am a student”,则Decoder每一时刻的输入,如下图
      在这里插入图片描述
    • 这种将label作为Decoder的输入的训练方式叫做Teacher Forcing,类似上述推理时将输出作为Decoder的输入的训练方式叫做Free Running。Teacher Forcing允许并行计算出每个时刻的输出,因此是最常用的

Transformer的Encoder和Decoder

  • Transformer的Encoder行为与上述一致,设Encoder的输入特征图形状为 ( n , d m o d e l ) (n, d_{model}) (n,dmodel),即长度为n的序列,序列的每个元素是 d m o d e l d_{model} dmodel维的向量,Encoder Layer(如下图左边重复N次的结构)是不改变输入特征图形状的,并且Encoder Layer内部的Sub-layer也是不改变输入特征图形状的,从而Encoder的输出特征图形状也为 ( n , d m o d e l ) (n, d_{model}) (n,dmodel)
  • 这样设计的原因是:每个Encoder Layer都有两次残差连接(如下图中的Add运算),残差连接要求输入输出特征图形状不变,为了减少超参数,所以这样设计
    在这里插入图片描述

LayerNorm

  • LayerNorm(如上图中的Norm运算)常用在可变长度序列任务里,接下来通过对比BatchNorm和LayerNorm,认识LayerNorm
    在这里插入图片描述
  • 左图为BN,C为单个样本的特征维度(即特征图的Channels,表示特征的数量),H、W为特征的形状,因为特征可以是矩阵也可以是向量,因此统称特征形状。BN希望将每个特征变成0均值1方差,再变换成新的均值和方差,因此需要在一个Batch中,找寻每个样本的该特征,然后计算该特征的统计量,由于每个特征的统计量需要单独维护,因此构造BN需要传入特征的数量,也就是C。同时,BN的可学习参数 w e i g h t + b i a s = 2 ∗ C weight+bias=2*C weight+bias=2C
  • 中图为LN,LN希望不依赖Batch,将单个样本的所有特征变成0均值1方差,再变换成新的均值和方差,因此需要指定样本形状,告诉LN如何计算统计量,由于样本中的每个值,都进行均值和方差的变换,因此构造LN需要传入样本的形状,也就是C、H、W。同时,LN的可学习参数 w e i g h t + b i a s = 2 ∗ C ∗ H ∗ W weight+bias=2*C*H*W weight+bias=2CHW
  • 示例:
>>> input=torch.rand([1, 3, 2, 2])
>>> input
tensor([[[[0.1181, 0.6704],
          [0.7010, 0.8031]],

         [[0.0630, 0.2088],
          [0.2150, 0.6469]],

         [[0.5746, 0.4949],
          [0.3656, 0.7391]]]])

>>> layer_norm=torch.nn.LayerNorm((3, 2, 2), eps=1e-05)
>>> output=layer_norm(input)
>>> output
tensor([[[[-1.3912,  0.8131],
          [ 0.9349,  1.3424]],

         [[-1.6113, -1.0293],
          [-1.0047,  0.7191]],

         [[ 0.4308,  0.1126],
          [-0.4035,  1.0872]]]], grad_fn=<NativeLayerNormBackward0>)
>>> output[0].mean()
tensor(-1.7385e-07, grad_fn=<MeanBackward0>)
>>> output[0].std()
tensor(1.0445, grad_fn=<StdBackward0>)
>>> layer_norm.weight.shape
torch.Size([3, 2, 2])
>>> layer_norm.bias.shape
torch.Size([3, 2, 2])

# 等价于
>>> mean=input.mean(dim=(-1, -2, -3), keepdim=True)
>>> var=input.var(dim=(-1, -2, -3), keepdim=True, unbiased=False)
>>> (input-mean)/torch.sqrt(var+1e-05)
tensor([[[[-1.3912,  0.8131],
          [ 0.9349,  1.3424]],

         [[-1.6113, -1.0293],
          [-1.0047,  0.7191]],

         [[ 0.4308,  0.1126],
          [-0.4035,  1.0872]]]])
  • 上述两种情况为计算机视觉中的BN和LN,可以看出,BN训练时需要更新统计量,从而推理时使用统计量进行Norm,而LN训练和推理时的行为是一致的
  • 在序列任务中,特征形状为1,多出来一个序列长度Seq_len,其他不变,1维的BN(BatchNorm1d)在N*Seq_len个帧中,计算每个特征的统计量,从而序列任务中的帧形状是C,因此LN要传入的帧形状是C,并且Input的形状中,C这个维度要放在最后
  • 1维的BN常用于声纹识别,但是Transformer风格的模型基本都采用LN,并且LN是适用于任何特征形状的,BN则根据特征形状不同,衍生出BatchNorm1d、BatchNorm2d等
  • 示例
>>> input=torch.rand([1, 200, 80])
>>> layer_norm=torch.nn.LayerNorm(80)
>>> layer_norm(input)[0][0].mean()
tensor(8.3447e-08, grad_fn=<MeanBackward0>)
>>> layer_norm(input)[0][1].mean()
tensor(-8.0466e-08, grad_fn=<MeanBackward0>)

>>> layer_norm(input)[0][0].std()
tensor(1.0063, grad_fn=<StdBackward0>)
>>> layer_norm(input)[0][1].std()
tensor(1.0063, grad_fn=<StdBackward0>)
  • 在序列任务中采用LN而不是BN的原因
    • 序列任务的样本很多时候是不等长的,很多时候要补0帧,当batch-size较小时,BN的统计量波动较大,而LN是对每一帧进行Norm的,不受补0帧的影响
    • 训练时要构造一个Batch,因此序列长度只能固定,但是推理时序列长度是可变的,采用BN容易过拟合序列长度,LN则不容易过拟合序列长度

SA(自注意力)

  • 对于一个输入序列 ( seq-len , d m o d e l ) (\text{seq-len}, d_{model}) (seq-len,dmodel),SA通过Q、K、V计算矩阵,计算得到对应长度的Q、K、V序列,这些序列构成Q、K、V矩阵
  • 有一点需要注意,Decoder Layer中的第二个MHSA(如下图),从左到右的输入,计算顺序是V、K、Q,其中V、K是根据输入的隐藏单元进行计算的,即 ( z 1 , z 2 , . . . , z n ) (z_1, z_2, ..., z_n) (z1,z2,...,zn),得到的V、K矩阵形状分别为 ( n , d k ) (n, d_k) (n,dk) ( n , d v ) (n, d_v) (n,dv),而Q是根据输出的隐藏单元进行计算的,即 ( z ^ 1 , z ^ 2 , . . . , z ^ m ) (\hat{z}_1, \hat{z}_2, ..., \hat{z}_m) (z^1,z^2,...,z^m),得到的Q矩阵形状为 ( m , d k ) (m, d_k) (m,dk)
    在这里插入图片描述
  • 上述得到的V、K、Q矩阵需要计算Attention函数,Transformer用的Attention函数是Scaled Dot-Product Attention,公式如下:
    Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V)=\text{softmax}(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V
  • 如果是Decoder的Attention函数则需要Mask掉softmax的输出,使得未来时刻对应的V接近0,如下图:
    在这里插入图片描述
  • 计算的细化过程如下图:
    在这里插入图片描述
  • Q K T QK^T QKT内积的含义是计算相似度,因此中间 ( m , n ) (m, n) (m,n)矩阵的第m行,表示第m个query对所有key的相似度
  • 之后除以 d k \sqrt{d_k} dk 进行Scale,并且Mask(具体操作为将未来时刻对应的点积结果置为 − ∞ -\infty ,从而Softmax运算后接近0),然后对 ( m , n ) (m, n) (m,n)矩阵的每一行进行Softmax
  • 最后output矩阵的第m行,表示第m个权重对不同帧的value进行加权求和
  • 需要注意的是
    • Attention最后的输出,序列长度由Q决定,向量维度由V决定
    • Q和K的向量维度一致,序列长度可以不同;K和V的序列长度一致,向量维度可以不同
    • Softmax是在计算第m个query对不同key的相似度的权重,求和为1
    • 除以 d k \sqrt{d_k} dk 的原因是因为后面需要进行Softmax运算,具有最大值主导效果。当 d k d_k dk较小时,点积的结果差异不大,当 d k d_k dk较大时,点积的结果波动较大(假设每个query和key都是0均值1方差的多维随机变量,则它们的点积 q ⋅ k = ∑ i = 1 d k q i k i q \cdot k=\sum_{i=1}^{d_k} q_ik_i qk=i=1dkqiki,为0均值 d k d_k dk方差的多维随机变量),从而Softmax后,大量值接近0,这样会导致梯度变得很小,不利于收敛。因此除以一个值,会使得这些点积结果的值变小,从而Softmax运算的最大值主导效果不明显

MHSA

在这里插入图片描述

  • 多头注意力的动机是:与其将输入投影到较高的维度,计算单个注意力,不如将输入投影到h个较低的维度,计算h个注意力,然后将h个注意力的输出在特征维度Concat起来,最后利用MLP进行多头特征聚合,得到MHSA的输出。MHSA的公式如下:
    MultiHead ( Q , K , V ) = Concat ( h e a d 1 , h e a d 2 , . . . , h e a d h ) W O h e a d i = Attention ( Q i , K i , V i ) \begin{aligned} \text{MultiHead}(Q, K, V)&=\text{Concat}(head_1, head_2, ..., head_h)W^O \\ head_i&=\text{Attention}(Q_i, K_i, V_i) \end{aligned} MultiHead(Q,K,V)headi=Concat(head1,head2,...,headh)WO=Attention(Qi,Ki,Vi)
  • 由于MHSA不能改变输入输出形状,所以每个SA的设计是:当 d m o d e l = 512 d_{model}=512 dmodel=512 h = 8 h=8 h=8时, d k = d v = d m o d e l / h = 64 d_k=d_v=d_{model}/h=64 dk=dv=dmodel/h=64
  • 在实际运算时,可以通过一个大的矩阵运算,将输入投影到 ( n , d m o d e l ) (n, d_{model}) (n,dmodel),然后在特征维度Split成h个矩阵,Q、K、V都可如此操作
  • 因此一个MHSA的参数量: 4 ∗ d m o d e l ∗ d m o d e l = 4 ∗ d m o d e l 2 4*d_{model}*d_{model}=4*d^2_{model} 4dmodeldmodel=4dmodel2,即Q、K、V加最后的MLP

FFN

  • FFN的操作和MHSA中最后的MLP非常相似的,公式和图如下:
    FFN ( x ) = m a x ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x)=max(0,xW_1+b_1)W_2+b_2 FFN(x)=max(0,xW1+b1)W2+b2
    在这里插入图片描述
  • 采用同一个MLP,对输入特征的每一帧进行维度变换(通常是增大为4倍),然后RELU,最后再变换回输入的维度
  • 因此一个FFN的参数量: d m o d e l ∗ 4 ∗ d m o d e l + 4 ∗ d m o d e l ∗ d m o d e l = 8 ∗ d m o d e l 2 d_{model}*4*d_{model}+4*d_{model}*d_{model}=8*d^2_{model} dmodel4dmodel+4dmodeldmodel=8dmodel2,即Q、K、V加最后的MLP
  • 综合,一个Encoder Layer的参数量为: 12 ∗ d m o d e l 2 12*d^2_{model} 12dmodel2,一个Decoder Layer的参数量为: 16 ∗ d m o d e l 2 16*d^2_{model} 16dmodel2

Embedding Layer和Softmax

  • Encoder和Decoder的Embedding Layer,以及最后的Softmax输出前,都有一个全连接层,在Transformer中,这三个全连接层是共享参数的,形状都是 ( dict-len , d m o d e l ) (\text{dict-len}, d_{model}) (dict-len,dmodel) dict-len \text{dict-len} dict-len是字典大小
  • 在Embedding Layer中,权重都被除以了 d m o d e l \sqrt{d_{model}} dmodel ,从而Embedding的输出范围在[-1, 1]附近,这是为了让Embedding的值范围靠近Positional Encoding,从而可以直接相加

Positional Encoding(位置编码)

  • Attention的输出是不具有时序信息的,如果把输入打乱,那么也只会导致对应的输出打乱而已,不会有导致值变化,但序列任务往往关注时序信息,一件事先发生和后发生,意义是不一样的,因此需要对Attention的输入添加位置编码
  • 位置编码的公式如下:
    PE ( p o s , 2 i ) = s i n ( p o s / 1000 0 2 i d m o d e l ) PE ( p o s , 2 i + 1 ) = c o s ( p o s / 1000 0 2 i d m o d e l ) \begin{aligned} \text{PE}(pos, 2i)=sin(pos/10000^{\frac{2i}{d_{model}}}) \\ \text{PE}(pos, 2i+1)=cos(pos/10000^{\frac{2i}{d_{model}}}) \end{aligned} PE(pos,2i)=sin(pos/10000dmodel2i)PE(pos,2i+1)=cos(pos/10000dmodel2i)
  • pos表示帧的位置,第二个参数表示特征的位置,奇偶交替,也就说:不同位置的同一特征,根据位置映射不同频率的正弦函数进行编码;同一位置的不同特征,根据奇偶分布映射不同频率的正弦函数进行编码
  • 位置编码值的范围是[-1, 1](Embedding的权重需要除以 d m o d e l \sqrt{d_{model}} dmodel 的原因),与Embedding对应元素相加,即可输入到Attention中

http://www.niftyadmin.cn/n/5218857.html

相关文章

Codebeamer—软件全生命周期管理轻量级平台

产品概述 Codebeamer涵盖了软件研发的生命周期&#xff0c;在一个整合的平台内支持需求管理、测试管理、软件开发过程管理以及项目管理等&#xff0c;同时具有IToperations&DevOps相关的内容&#xff0c;并支持变体管理的功能。对于使用集成的应用程序生命周期管理&#xf…

c++用二进制的逻辑运算,就可以得出十进制的上边界对齐

在C中&#xff0c;使用二进制的逻辑运算可以实现十进制的上边界对齐是因为二进制的位运算具有一些特定的性质。 当进行位运算时&#xff0c;每个数字都可以表示为二进制位的组合。在二进制中&#xff0c;每个位都表示2的幂。例如&#xff0c;最低位表示2^0&#xff0c;下一位表…

简单订单和支付业务的相关流程

1、订单创建、支付及订单处理流程图 2、创建HTTP客户端工具类 Slf4j public class HttpclientUtil {//类中定义了一个私有静态成员变量instance&#xff0c;并且将其初始化为HttpclientUtil类的一个实例&#xff0c;用于实现单例模式。private static HttpclientUtil instance…

Skywalking接入实际应用做日志跟踪

Skywalking客户端挂载 从官网下载skywalking-agent客户端&#xff0c;并挂在到应用服务器指定目录 挂载到应用主机中,好处是解决打包应用镜像的时候&#xff0c;镜像过大&#xff0c;部署成本过高。 docker-compose部署应用,并接入skywalking服务,这里以gateway为例 versio…

3D ACIS Modeler和HOOPS Visualize助力鲁班软件打造BIM数字化平台

鲁班软件成立于2001年&#xff0c;始终致力于BIM技术研发和推广&#xff0c;为建筑产业相关企业提供基于BIM技术的数字解决方案&#xff0c;专注打造能够支撑建筑企业集团发展的BIM数字化平台鲁班工程管理数字平台(Luban Builder)&#xff0c;以及可承载园区级或城市级的BIM、C…

YOLOv7独家原创改进: AKConv(可改变核卷积),即插即用的卷积,效果秒杀DSConv | 2023年11月最新发表

💡💡💡本文全网首发独家改进:可改变核卷积(AKConv),赋予卷积核任意数量的参数和任意采样形状,为网络开销和性能之间的权衡提供更丰富的选择,解决具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标的问题点,效果秒殺DSConv 1)AKConv替代标准卷积进行…

深度学习大数据物流平台 python 计算机竞赛

文章目录 0 前言1 课题背景2 物流大数据平台的架构与设计3 智能车货匹配推荐算法的实现**1\. 问题陈述****2\. 算法模型**3\. 模型构建总览 **4 司机标签体系的搭建及算法****1\. 冷启动**2\. LSTM多标签模型算法 5 货运价格预测6 总结7 部分核心代码8 最后 0 前言 &#x1f5…

c4d三维动画制作推荐 Cinema 4D 2024 中文for mac

功能介绍 场景管理器 Cinema 4D新内核的强大功能让您可以使用灵活的基于节点的资产来实现程序化的几何体创建、克隆等。 烟火 从Cinema 4D的任何物体或样条发射火焰、烟 雾和爆炸-加热&#xff01; 建模 引入用于重新拓扑的 ZRemesher、新的交互式建模工具、高级样条节点、对…